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1 INTRODUCTION 
There have been a growing number of successful, high-payoff service applications of viscoelastic 
damping materials for vibration and noise control. A crucial factor in the further advancement 
and application of damping technology is accurate and efficient smoothing, interpolation, 
modeling (SIM), presentation, retrieval, and dissemination of damping material design data[1]. 
The present document purports to improve the SIM state of the art. Most sets of data for dynamic 
mechanical properties of damping materials are generated for screening purposes or for 
engineering applications and, therefore, typically and justifiably, do not cover temperature and 
frequency ranges in a scientific manner. It is challenging to interpret the data in such a way as to 
be useful to the designer while providing a reliable indication of limitations.  

The basic fractional calculus model for complex modulus (CM) is extremely valuable for a 
crucial step in the present effort. Fractional calculus has performed an important historical role 
and has been established as the basis for an accurate and efficient model for the CM of vibration 
damping materials[2,3,4]; it has also been related to molecular dynamics[5]. The slope of the 
temperature shift function (STSF) has been established as the property which causes CM data to 
be correctly shifted[6,7]. Bode diagrams from feedback control system methodology have been 
introduced for fractional powers[8], which are used here to lend insight into the CM model 
comprised of first-order powers. Historically, the wicket plot has been utilized in order to check 
for an obvious lack of quality/accuracy.  

Viscoelastic material undergoing stress and strain of present interest is treated as a linear system; 
this may be sufficiently accurate or simply a first approximation. Consequently, a well-
established body of mathematics from servomechanism feedback control systems applies. 
Specifically, the real and imaginary components (or any other pair) of CM (actually a frequency 
response function) must satisfy a certain mathematical interrelationship. The new model (the 
Ratio Model or just ratio) of the CM as a function of reduced frequency is used, namely, ratios of 
factored polynomials of integer order, and the individual factors are of first order, while the 
numerator and the denominator are of the same order. One pair of first order factors, one in the 
numerator and the other in the denominator, result in one step with respect to Bode diagram 
considerations. The Ratio Model intrinsically guarantees that the above interrelationship is 
satisfied. The wicket plot actually displays two components of the CM, namely the material loss 
factor and the magnitude (or real part) of the modulus. The present approach is based on 
evaluating parameters in the Ratio Model such that the interrelationship established by the wicket 
plot are maintained. The form of the Ratio Model has been selected for ease of fitting the wicket 
plot by initialization and iteration and for ease of interconversion between any one dynamic 
mechanical property and any other.  

Once the values of the parameters of the Ratio Model are established, the set of CM data has 
been modeled as a function of reduced radian frequency with no knowledge of the temperature 
shift function (TSF) being required. Implicitly, each point on the arc length of the wicket plot is 
associated with a value of reduced radian frequency. To evaluate the temperature shift function 
for each experimental data point, the perpendicular distance from the point to the wicket plot 
determines an associated value of the reduced radian frequency. Knowing the associated value of 
the reduced radian frequency and the experimental frequency and temperature enables the 
calculation of the TSF for that point. 
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The present approach is interactive and highly automated and exploits modern computational 
power. This contrasts with the historical approach of defining the TSF visually, or perhaps by 
curve fitting techniques, for which at least three decades of experimental frequency coverage for 
each experimental temperature is highly desirable, which requires considerable experience, and is 
extremely time consuming. 
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2 CONSTITUTIVE EQUATIONS 
The operator form of the constitutive equation for the linear, isothermal, isotropic, 
macroscopically homogenous, thermorheologically simple (TRS) (defined after Equation 19) 
viscoelastic material being deformed in shear is[2,9,10] 
 ( ) ( ) ( ) ( )tqQtqP RR γτ =  (1) 

where τ(t) is the shear stress, γ(t) is the strain, P(qR) and Q(qR) are polynomials in qR, the 

operator, which is defined as  
 qdtddtdq RR ΤΤ =/== αα/ , (2) 

where the reduced time and its differential are  
 ( ) ( )Τ/=;Τ= ΤΤ αα dtdttt RR / , (3) 

and the logarithmic form is  
 Τ−= αlogloglog ttR , (4) 

where t is time and αT(T)  is the TSF dependent on temperature, T [11]. The laplace transform 

(LT) of Equation 1 is  
 ( ) ( ) ( ) ( )RRRR ssQssP γτ = , (5) 

and the Fourier transform (FT) is  
 ( ) ( ) ( ) ( )RRRR jjQjjP ωγωωτω = . (6) 

It is convenient to change between the time domain, the frequency domain and the laplace 
domain by simple algebraic substitution:  
 ωαωαα jjssqq RRR ΤΤΤ =↔=↔= . (7) 

The FT of Equation 1 leads to the definition of the complex shear modulus valid for steady state 
sinusoidal stress and strain  
 ( ) ( ) ( )RRRRR jPjQjjjG ωωωγωτω // =)()(= ∗∗ , (8) 

where )(∗ Rjωτ  denotes the FT of τ(t) and the reduced radian frequency is  
 ( ) ( )Τ2=2=Τ= ΤΤ αππωαω ffRR , (9) 

which is a product of ω, the radian frequency in radians/s and the dimensionless temperature shift 
function, while fR and f are in Hz, which is potentially confusing. The logarithmic form is 

 ( ) ( ) ( ) ( ) ( ) ( )ΤΤ +=;+= ααωω loglogloglogloglog ffRR . (10) 

Alternatively, let a viscoelastic material element undergo a sinusoidal shear strain[12] 
 tωγγ sinΑ= , (11) 

which lags the sinusoidal shear stress  
 ( )Gt δωττ += Α sin  (12) 

by phase angle δG. The sinusoidal strain and stress may be represented in complex notation as  

 tje ωγγ Α
∗ =  (13) 

 ( )Gtje δωττ +
Α

∗ = , (14) 
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and the complex shear modulus, G, equivalently defined and the imaginary component is  
 ( )GG

jj jGeGeG GG δδγτγτ δδ tancos +1==/=/= ΜΜΑΑ
∗∗  (15) 

 ( )GRIR jGjGGjGG η+=+=+= 1''' , (16) 

where MG  is the magnitude of the shear modulus, 'GGR =  is the real (storage) modulus, the 
imaginary component is 
 GRI GGG η== '' , (17) 

and the material loss factor is 
 GG δη tan= . (18) 

The CM is a mathematical convenience to represent the magnitude and phase relationship 
between stress and strain.  The complex shear modulus is dependent on both temperature and 
frequency  
 ( ) ( )( ) ( )RjGjGTGG ωαωω =Τ== Τ,  (19) 

in a very specific way, i.e., Equation 19 applies; a material obeying Equation 19 is called TRS. 

A value for reference frequency which is reasonably close to that of many applications  
 sec/~;100 radHzf REFREF πω 200==  (20) 

is used in the present effort.  
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3 THE BASIC FRACTIONAL MODEL 
Many viscoelastic damping materials have a rubbery plateau, a transition region (where the 
modulus changes rapidly and the loss factor reaches a peak), and a glassy plateau. The basic 
fractional equation[2,13], which possesses these characteristics, is  
 ( ) ( )[ ] ( )[ ]ββ ωωωωω RORRORgeR jjGGjG /+1//+= , (21) 

where the form of the parameters has been chosen to facilitate physical and mathematical 
interpretation.  This expression is plotted in Figure 1.  The expression for the maximum loss 
factor,  
 ( ) ( ) ( )[ ] ge GGCCCC /=;/2/2++1//2−1= 1/2 πβπβη costanmax , (22) 

 ( ) Csmall;/2≈ πβη tanmax  (23) 

is of interest and the expression for the exponent  

 
( ) ( ) ( )

( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

4−−1
+1−12+−1

⎟
⎠
⎞

⎜
⎝
⎛ 2= 22

1/221/22

max

max
maxarctan

η
ηη

π
β

CC
CCC

 (24) 

in terms of the other parameters in E21 is useful. Another useful relationship is that maximum 
loss factor occurs at a reduced radian frequency of 
 ( ) ( )REFREFgeROR GG Τ=/= Τ

1/2 αωωω β
η max

, (25) 

from which it may be determined  
 ( ) βωω 1/2

0 /= egREFR GG  (26) 

By combining Equation 26 and Equation 20 it follows that 
 ( ) ( ) ββ πωω 1/21/2

0 /200=/= egegREFR GGGG  (27) 

An alternative form of Equation 21 is useful for some purposes  
 ( ) [ ] ( )[ ]βωωω RORgegR jGGGjG /+1/−+= . (28) 

The quantity 
 ( ) ( )ββ ωωαωω ROTROR /=/  (29) 

governs the transition and may cover a range of 10 decades or so. The phase is governed by  
 ( ) ( )/2+/2== /2 πβπβπββ sincos jej j . (30) 

Equation 28 ( )RjG ω  may be written  

( ) [ ] ( ) ( ) ( )[ ]βωωωωω RORRBRBgegR jjPjPGGGjG /+1=/−+= ; , 

where the subscript B is for the basic operator.  B. Hartman, G. Lee, and J. Lee[14] have had 
success in fitting polyurethane CM data using the polynomial  

( ) ( )[ ]γβωωω RORRHN jjP /+1=  

due to Havriliak and Negami (HN)[15] where 
7.03.0;1.0 ≤≤≈ βγ . 
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Salvia[16] had success in fitting sets of data using the polynomial  
( ) ( ) ( ) k

R
h

RRSH jjjP −− ++1= ωωδω  

due to Huet[17] where 
3.00;6.00 ≈≤≈≤ hk . 

These models have the advantage of having a small number of parameters, which was especially 
desirable before the availability of modern computational power. 
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4 SOME PROPERTIES OF LINEAR SYSTEMS 
Consider a single input, single output, causal, linear, constant-coefficient, stable, finite system 
and its associated frequency response function (FRF) in the form  
 ( ) δδ jeefH jA +Α−=Η;= − ln  (31) 

Properties of such a system are 1) a cause and effect relationship holds between input and output, 
2) an applied input causes a unique output, 3) after a small perturbation, the output returns to an 
equilibrium state and the output dies out after a duration of the input, and 4) the value of all 
physical quantities are finite at all frequencies including zero and infinity. 

It is well known that if one component (i.e., magnitude, phase, real or imaginary) of the FRF is 
specified over the entire frequency range, any other may be obtained from the one given. This 
relationship is believed due originally to Kramers and Kronig[11,18,19]. Gross published the 
following equations 

 ( ) ( )∫
∞

0 22 −
2

= ξ
ξω

ξξ
π

ω dGG IR  (32) 

 ( ) ( )∫
∞

0 22 −
2

= ξ
ωξ

ωξ
π

ω dGG RI . (33) 

The form of the CM model to be selected below will intrinsically guarantee that this property will 
be satisfied; this is a crucial point in the present work. 

The property of systems will also be used to obtain relationships of the CM in general and also 
near the center of the transition region. It is well known that the loss factor is approximately 
proportional to the slope of both the magnitude and the real modulus. With reference to Equation 
31, an equation useful for the present purpose is[20] 

 
( ) ( )

( ) [ ] duududdud

dudd

/2/Α−/Α1/

+/Α/2=

0

∞+

∞−

0

∫ cothlnπ

πωδ
    , (34) 

where  
 ( )du ωω/= ln . (35) 

An element of viscoelastic material may be considered to be a linear system with input of stress 
and output of strain or vise versa and the CM is a FRF. By comparing Equation 15 and Equation 
31, it may be seen that  
 ωlnln/ln; dGddudAGeG A

M /=;Α−== ΜΜ
− , (36) 

and, because the integral term is small (note that ω  and Rω are interchangeable in most of these 
relationships), 
 ( ) ωπδ loglog dGd //2≈ Μ , (37) 

or substituting Equation 18[21],  
 ( ) ]loglogtan[ ωπη dGd //2≈ Μ . (38) 

A numerical evaluation of this approximation is included in Figure 1. The inverse expression is 
sometimes useful  
 ( ) ηπω arctan/loglog 2≈/Μ dGd  (39) 
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and shows that high values of loss factor and a large value of the derivative are associated.  This 
relationship, Equation 38, is a first approximation over the entire frequency range and can be 
very good near the center of the transition region, or wherever ωloglog dGd /Μ  is nearly constant 
over a wide frequency range. For most materials of interest sufficiently near the center of the 
transition region  
 βωωω ββ ≈/;∝;∝ Μ loglog dGdGG RM  (40) 

or, combining Equation 38 and Equation 40, considering the particular properties of the CM,  
 ( ) maxmax tantan δπβη =/2=    . (41) 

(Compare with Equation 23.) 
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5 BODE DIAGRAMS 
The technique of Bode diagrams is a highly developed tool in servo feedback control systems 
analysis[21]. The logarithm of a complex number  
 φjMez =  (42) 

is also a complex number:  
 ( )( )φjz 0.434....+Μ= loglog . (43) 

Multiplication and division of complex numbers or complex-valued functions become addition 
and subtraction in the logarithmic domain.  
 2121 −−Ν+Ν=Η= DDDDNNH logloglogloglog;/ 2121 . (44) 

Separating Equation 44 into real and imaginary components leads to expressions for the 
magnitude and the phase:  

 
2121

;logloglogloglog

DDNNH

HHHHH
φφφφφ −−+=

−−+=
. (45) 

A complex valued frequency response function in feedback control systems may be written as 
ratios of factored polynomials. The asymptotes of individual factors play the dominant role in the 
Bode diagram technique. The CM is a frequency response function; only one type of factor is of 
interest here:  
 ( ) 2/11 jRz += , (46) 

where R is a normalized frequency. The magnitude and the phase of Equation 46 are plotted in 
Figure 2 together with their asymptotes. The frequency where the magnitude asymptotes intersect 
(at R = 1) is called a “corner” or “break” frequency. When the factor appears in the denominator, 
its magnitude and phase are mirror images reflected about 1 and 0, respectively. Consider now a 
pair of factors, one in the numerator and another in the denominator: 
 ( )[ ] ( )[ ] 11

1/2
1

1/2
1 <;/+1//+ pzpjzj ωω1 . (47) 

This ratio of a pair of factors results in a stair step in the magnitude asymptotes where the slope 
of the riser is 1/2. Two such steps are illustrated in Figure 3.  

General fractional order factors are similar; while integer orders are standard in servo feedback 
systems methodology. It happens that an adequately large number of this type of step accurately, 
efficiently and conveniently represents a CM and that any other dynamic mechanical property of 
interest can be easily obtained. The asymptotes provide a basis of visualizing expressions for the 
CM. The basic fractional model Equation 21 can be considered to advantage in terms of Bode 
diagrams.  It is valuable both for visualization and as a first approximation in modeling a set of 
experimental CM data. 
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6 THE MODEL FOR CM 
A model which is a ratio of factored polynomials of fractional order[1,2,8,22], 

 ( ) ( )[ ] ( )[ ] l

N

leR pzpjzjGjG <;/+1//+1Π= 111=

ββ ωωω
1

, (48) 

has been investigated, and it has been observed that using the fractional power, β;0<β<1, does 
not result in either accuracy or efficiency in fitting CM data; it does preclude ease of 
interconversion with other dynamic properties unless β=1/2. Its use does not enable a relatively 
small number of parameters to be used. After extensive experience in fitting sets of CM data, the 
model selected is a ratio of factored polynomials of integer order, where each factor is of the first 
order and the numerator and denominator are of equal order. It happens that this form is 
particularly convenient for interconversion to other dynamic mechanical properties, as will be 
shown. Furthermore, Bode diagram considerations lead to convenient iteration algorithms in 
determining values for the parameters. Modern computational power is used to great advantage: 

 ( ) ( ) ( ) iiiRiR
i

eR pzpjzjGjG <;/+1//+1= ∏
Ν

1=

ωωω . (49) 

See Figure 4.  It is convenient to rewrite this equation in terms of ri, which determines the 

location of the center of the riser, and ai , which determines the vertical height of the riser (the 

asymptote of the riser is slope one), as follows: 

 ( ) ( ) ( )iiRiiR
i

eR rajrajGjG /+1//+1= ∏
Ν

1=

ωωω ; (50) 

the parameters are related by 
 iiiiiiiiiiii zpazprarzrap /;;/; 22 ==== . (51) 

This equation is called the Ratio Model and inherently satisfies the real-imaginary component 
relationship, Equation 32 and Equation 33; this is vital to the present approach. Note the use of 
ωR in lieu of fR; this is a source of potential confusion in numerical work. Equation 49 is a 
frequency response function and the associated transfer function is  

 ( ) ( ) ( )iRiR

N

i
eR pszsGsG /1//1

1

++= ∏
=

. (52) 

If Equation 52 is divided by sR, the method of partial fractions and the heaviside expansion 

formula (see any text covering laplace transforms) may be applied; the result is then multiplied 
by sR to give a sum of fractions: 

 ( ) ( ) ( )iRiRi

N

i
eR pspsGGsG /1//

1
++= ∑

=

, (53) 

where 

 ( ) ( )lk

N

kl
l

lk

N

l
ek ppzpGG /1//1

11

−−−= ∏∏
≠
==

, (54) 
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which may be placed in the form 
 

 ( )∏
≠
= −

−
−=

N

kl
l llkk

lklk
kek rara

rraaaGG
1

2

)/(1
)/(11 . 

Note that Equation 53 may be placed in GHM form[23,24]; consider two terms, without loss of 
generality, from Equation 53:  

 
( ) ( )

( ) 2121
2

1221
2

21

2

2

1

1

ppspps
spGpGsGG

sp
sG

sp
sG

RR

RR

R

R

R

R

+++
+++

=
+

+
+

.  (55) 

The CM in a form corresponding to E53 is  
 

 ( ) ( ) ( )ιιι
ι

ωωω pjpjGGjG RReR /+1//+= ∑
Ν

1=

, (56) 

which may be written such that real and imaginary components are apparent:  

 ( ) ( ) ( )[ ] ( )[ ]∑
Ν

1=

22 /+1//+/+=
ι

ιιιι ωωωω ppjpGGjG RRReR . (57) 

The transfer function for the relaxation modulus is easily found from Equation 53[9] 

 ( ) ( ) ( )∑
=

++==
N

i
RiiReRRRRLX spGsGssGsG

1
///  (58) 

and, its inverse LT leads to the relaxation modulus  

 ( ) Rktp
k

N

k
eRRLX eGGtG −

=
∑+=

1
. (59) 

Shapery has had success in representing the relaxation modulus with this expression, which is a 
Prony series. The discrete relaxation spectra is[9] 
 ( ) pkpkkp kk

GH τττ ∆/=Η= , (60) 

where  

 
2

−
−

2

−
=∆;

1
= −+ 11 kkkk

k

pppp
pk

k
p p

ττττ
ττ . (61) 

Substitution leads to  

 ⎥
⎦

⎤
⎢
⎣

⎡
−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

−+

111
2

/
11 kk

k
kk pp

pGH . (62) 

Consider a specimen subjected to a positive step shear strain input at time = 0, as in the stress 
relaxation case, but then immediately followed by a negative step function at time =δt. The 
magnitude of the step is such that the area under the strain-time curve (i.e., the strain impulse) is 
unity. The time increment is then allowed to become a differential. In systems analysis, the 
resulting response quantity is called the impulsive admittance, and by analogy is here called the 
impulsive modulus. It is found by taking the derivative of Equation 59: 

 ( ) Rktp
kk

N

k
RIM epGtG −

=
∑−=

1
. (63) 
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The complex compliance is the reciprocal of Equation 49. A similar development yields 
analogous expressions for creep compliance and retardation spectra:  

 ( ) ( )RReR jzjJJjJ ωωω ιι
ι

+/−= ∑
Ν

1=

. (64) 

Knaus, following Schapery, represented the creep compliance as[9] 

 ( ) ( )Ritz
i

N

i
gRCRP eJJtJ −

=

−+= ∑ 1
1

, (65) 

where  

 ( ) ( )lk

N

kl
l

lk

N

l
ek zzpzJJ /1//1

11

−−−= ∏∏
≠
==

 (66) 

which may be placed in the form 

( )∏
≠
= −

−
−=

N

kl
l lkkl

llkk
kek rara

raaraJJ
1

2

)/(1
)/(11/1 . 

The discrete retardation spectra is[9]: 

 ⎥
⎦

⎤
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

−+

111
2

/
11 kk

k
kk zz

zJL . (67) 

When the specimen is subjected to a stress impulse, the impulsive compliance is found from 
Equation 65:  

 ( ) Ritz
ii

N

i
RIM ezJtJ −

=
∑=

1

. (68) 

When the input function is a force, then the area is actually a mechanical impulse. The impulsive 
modulus and impulsive compliance would be useful in studies of response to impulsive types of 
loading, e.g., shock, or for use in convolution integrals. 

At this juncture, the ratio of polynomials of first-order factors has been covered as the preferred 
model. Expressions have been developed for relaxation modulus, relaxation spectrum, creep 
compliance, and retardation spectrum. Some interconversion of the dynamic mechanical 
properties is accomplished in closed form as indicated above; others may be performed 
numerically but are greatly facilitated by the above expressions. 
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7 MOLECULAR WEIGHT DISTRIBUTION 
Some investigators may be interested in an indication of the relative molecular weight 
distribution. The following is extracted from the literature in only a formal manner and presented 
without comment regarding applicability or appropriateness. One investigator has developed an 
expression for the cumulative molecular weight distribution[25]: 
 ( ) gRRMWD GjGC

W
/= ω , (69) 

while an expression developed by another investigator[26] is 
 ( )[ ]1/2/= gRRMWD GjGC

T
ω . (70) 

In both of these expressions, the plateau modulus, which is the maximum real modulus in the 
terminal zone, has been taken as the glassy asymptote. The molecular weight distribution is 
proportional to the derivative,  

 ( ) MWD
R

WD C
d

dM
ωln

∝ , (71) 

and the relative molecular weight distribution may be expressed  

 ( ) MWD
R

RMWD
R

MWD C
d

dC
d

dR
ω

ω
ω

==
ln

 (72) 

when Equation 69 is substituted into Equation 72:  

 
( )
R

RRR

g
MWD d

jdG
G

R
W ω

ωω1
= , (73) 

or when Equation 70 is substituted into Equation 72: 

 
( )[ ]

( )
R

RRR

RRg
MWD d

jdG
jGG

R
T ω

ωω
ω 1/2=

2
1

. (74) 

The proportionality relationship between frequency and molecular weight is[26] 
 ( )3.4Μ∝ WRω/1 , (75) 

or the normalized molecular weight is given by 
 −0.294= RMWN ω . (76) 

The range of ωR should be confined to the experimental range. The real part of Equation 57 is 

 ( ) ( )222
Ν

1=

+/+= ∑ ιι
ι

ωωω pGGjG RRgRR , (77) 

and its derivative is 

 
( ) ( )2222

Ν

1=

+/2=∑ ιιι
ι

ωω
ω
ω ppG

d
jdG

RR
R

RR . (78) 

Substituting Equation 78 into Equation 73 results in one estimate of relative molecular weight 
distribution:  

 ( )22222

=

+/= ∑ ιι ωω ppG
G

R RRi

N

ig
MWDW

1

2
; (79) 
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substituting Equation 78 into Equation 74 results in another:  

 
( )[ ] ( )22222

Ν

1=
1/2 +/= ∑ ιι

ι

ωω
ω

ppG
jGG

R RRi
RRg

MWDT

1
. (80) 

It may be seen that the form of the expressions facilitates these calculations.  
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8 A SPECULATED POISSON’S RATIO 
Some investigators may be interested in a complex valued Poisson’s ratio. The generalized 
Hooke’s law for elastic materials may be written:  
 klklkl Ge2+Φ= λδσ . (81) 

By analogy with Equation 1, operators may be placed in front of each term[2,9]  
 ( ) ( ) ( ) klRklRklR eqQqRqP 2+Φ= δσ , (82) 

which is consistent with the previous complex shear modulus (see Equation 8), where the 
operators are taken to be 
 ( ) ( )βωωω RORR jjP /+1=  (83) 

and  
 ( ) ( )βωωω RORGLSRBRR jGGjQ /+= . (84) 

The other operator (obviously correct in the rubbery and also the glassy regions, which only 
leaves the transition open to discussion) by analogy, assumption, conjecture, and/or speculation is 
taken to be 
 ( ) ( )βωωλλω RORGLSRBRR jjR /+= , (85) 

and, therefore, the complex valued lamme expression is obtained as 

 ( ) ( )
( )β

β

ωω
ωωλλωλ

ROR

RORGLSRBR
R j

jj
/+1

/+
= . (86) 

It might be interesting to investigate 
( ) ( )[ ]1−+= RGLSRBRR jPGGjQ ωω  

in order to accommodate a more general operator such as HNP  or SHP  above.  It is further 
conjectured that  

( ) ( )[ ]1−+= RGLSRBRR jPjR ωλλω , 

which leads to 
( ) { ( )[ ] } ( )RRGLSRBRR jPjPj ωωλλωλ /1−+= . 

At the present writing, these quantities have not been investigated. 
Due to the correspondence principle of viscoelasticity, the relationships, 
 )12/1/( −= υλ G  (87) 

 ( ) ( )GGGE +/2+= λλ3  (88) 

 ( )G+/2= λλυ  (89) 
 /32+= GλK  (90) 
 G2+= λW  (91) 

are valid for the rubbery region, the glassy region, the Fourier transform, the laplace transform, 
the operator form, and complex valued quantities. The quantities are lamme, Youngs, Poissons, 
bulk, and plane wave (or longitudinal), respectively. For certain types of materials, there is a 
tendency for Poisson’s ratio to be considered as a basic quantity along with another such as shear 
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modulus. As the rubbery value of Poisson’s ratio approaches 0.5, it has a dramatic effect on the 
rubbery value of W, K, and λ, and also on the max loss factor of these quantities. By contrast, the 
glassy value of Poisson’s ratio does not have a large effect on the other quantities. To illustrate 
this, a table has been constructed with a glassy shear modulus of 200.0 and a rubbery shear 
modulus of 0.0004; the glassy values for Poisson’s ratio are 0.35 and 0.3, while the rubbery 
values are 0.495 and 0.49995. Rubbery and glassy values for the other quantities are tabulated. 
Figure 5 shows a typical transition for Poisson’s ratio for the hypothesized relations. Figure 6 and 
Figure 7 show a comparison of loss factor for the quantities and the dramatic effect of the value 
for Poisson’s ratio as it approaches 0.5. As a consequence, the modal frequencies and damping 
for structures and modes where a significant amount of strain energy is in bulk type of stress and 
strain will be sensitive to the rubbery value of Poisson’s ratio. In this event, Modal Strain Energy 
(MSE) calculations should distinguish between bulk and shear strain energy due to the effect on 
modal damping (or modal loss factor) and on material loss factor. 
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9 THE WICKET PLOT 
The first step in processing any set of CM data is to examine the collection of the experimental 
data points in the wicket plot format, which is logηG versus logGR. Although logGR is often 

displayed because it is of interest during design applications, MGlog  is used for Bode plot 
visualization and in the software calculations. For conventional viscoelastic damping materials 
( 1max ≈η ), consideration of logηG=logtanδ is satisfactory. It does distort the scale for high loss 

factor and for low loss factors, where a scale in linear phase angle, δ, would be more appropriate.  
Perhaps in the future, the damping industry will adopt the linear scale in phase angle. The wicket 
plot is related to the Nichols chart and the attendant body of mathematics developed by electrical 
engineers during the 1940s for analysis and design of feedback servo systems. If the set of data 
represents a TRS material, does not require a vertical shift of modulus for temperature and/or 
density, and has no scatter, the collection of data points will plot as a curve of vanishing width. 
Each location along the arc length, s, of the curve corresponds to a unique value of reduced 
radian frequency (see Equation 19); however, this consideration is postponed until after the 
mapping step below. The material loss factor and the real modulus are cross-plotted in the wicket 
plot, and the reduced radian frequency, temperature, and frequency parameters do not appear. No 
part of any scatter in the wicket plot can be attributed to an imperfect temperature shift or 
modeling. The wicket plot may possibly reveal valuable information regarding scatter in the 
experimental data. The width of the band of data, as well as the departure of individual points 
from the band, are indicative of scatter. Acceptable scatter depends on the application. Nothing is 
revealed about the accuracy of measurements or about any systematic error. Low scatter in a 
wicket plot is a necessary but not a sufficient condition of data quality. Consistency does not 
indicate accuracy.  

Ideally, the wicket plot would be maintained current as the set of data is being gathered to ensure 
adequate range of temperature and frequency as well as a real time indication of data quality or 
any problems. The wicket plot is an ideal way to remove individual outlying data points.  

At one time, the approach to smooth, interpolate, and model a set of CM data began with using 
the wicket plot interactively to estimate values for Ge, Gg, and ηmax (respectively the 
equilibrium or rubbery asymptote, the glassy asymptote, and the maximum material loss factor).  
These quantities were used to calculate the exponent, β, using E 24. A value for cutoffη  was also 
determined to select that subset of data points within the transition region (see Figure 8). This 
approach results in a reasonable approximation to the VEM properties in the transition region, 
and was necessary in the previous SIM approach. 
After the set of data is examined and edited in the wicket plot, an Analytical Wicket is developed 
as the next step of the latest approach to the SIM process. The vertical axis is taken as y=logη ; 
the horizontal axis x =  logGM. The range of experimental data on the wicket plot is represented 

by a series (approximately 15) of cubic splines. The set of data is divided into regions along the 
arc length of the wicket with approximately the same number of points in each region. The points 
in each region are used to determine a best fit quadratic from which an xyy’ are determined and 
used as a common knot for the two splines on each side of the knot. The knots are represented by 
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open circles in Figure 8 through Figure 12.  Each experimental data point has a perpendicular 
distance, d, to the set of splines (shown in Figure 8 through Figure 12) and is associated with a 
unique arc length, s. The xyy’/sdd’ knots may be adjusted to minimize the sum of squares of the 
d’s. After the data region is characterized, the model Equation 50 cannot be terminated because 
of considerations of Equation 34. A graceful/reasonable extrapolation of the skirts of the wicket 
plot beyond the range of experimental data is essential. At present, a set of splines is used in the 
rubbery skirt region from the last data knot to a knot with loss factor two decades less and the 
slope gradually changing. A similar set is used in the glassy skirt region. (Alternatively, skirts 
from the basic CM equation could be used.) The combined set of splines (i.e., rubbery skirt, data 
region, and glassy skirt) serve to define uniquely and precisely the loss factor as a function of 
modulus magnitude as well as to smooth and interpolate the data and is called the Analytical 
Wicket. It is intended to be a good representation of the center and of the slope for the band of 
data and an appropriate extrapolation into the skirts. The maximum value of the Analytical 
Wicket defines the ηmax and the associated GMηmax. Furthermore, consistent with Equation 20, 
the numerical value for the reduced radian frequency associated with this point will be assigned 
later is this process to be identical to that of the reference-reduced radian frequency, 200π rad/s 
(see Figure 8 through Figure 12). 

If the skirts of the basic fractional model were to be used to extrapolate, cutting the curve at the 
points where the slopes of the curve and of the slope, y’, of the end knots of the range of 
experimental data are identical, and shifting the skirt left and right (adjusting x), and also up and 
down (adjusting y) until the slope and the xy points are superimposed would be required. Final 
values of the Ge and the Gg must be obtained by adjusting the old values by the amount of the 

horizontal shift and a final value for ( )maxηβ ,, ge GG  representative of this set of data can be 
calculated. This grafting of the skirts onto the set of splines has the effect of extending the 
definition of loss factor as a function of modulus magnitude for this set of data.  

The Analytical Wicket is taken as the definition of the data in so far as the relationship between 
material loss factor and the modulus magnitude is concerned. The experimental points will be 
used further in determining the TSF. The constraint of the Analytical Wicket must be followed in 
the determining of values for the parameters in the Ratio Model. 
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10 MAPPING 
The x-y trajectory of a thrown ball is used as an example of mapping and is illustrated by Figure 
13. Imagine that a set of tabulated x-y displacement data from a multiple stroboscopic 
photographic exposure through a window is available. The set of data may be cross plotted in the 
x-y domain without regard to time. Analytic geometry may be used to describe the trajectory in 
the x-y domain, and also if desired, to describe x and y as functions of the arc length of the 
trajectory. From physics, the equations of x and y as functions of time are known in terms of 
parameters whose values may be determined from experimental data. The arc length of the 
trajectory may be mapped into time and is justified by consideration of physics.  

Very intricate x-y curves (e.g., handwriting) can be represented by using the Bezier or other 
parametric approach. The present application is not so challenging. 

Similar to the trajectory, the arc length of the wicket plot may be mapped into reduced radian 
frequency and is justified by the mathematical properties of systems. The basis of the mapping is 
the real-imaginary (or any other two components) relationship of linear systems. The form of the 
Ratio Model is particularly amenable to the mapping and rapid convergence.  

The mapping consists of first initiation and then iteration until convergence.  Equation 53 using 
the ri’s and ai’s has been found to be most convenient; the ri’s are equally spaced on the log 

reduced radian frequency, Rω , and do not change for the iteration.  Nr = Ndec * Nspd; where Nr 
is the total number of points, Ndec is the number of decades of reduced radian frequency and 
Nspd is the number of steps per decade.  The r's become 
 spd

ii rrrr Ν1/
+ 10== δδ ;1 . (92) 

The set of initial estimates of parameter values for the Ratio Model is determined by evaluating 
Equation 21 at each Bode diagram step (i.e., at the center of each ratio of an associated pair of 
factors) in the model.  The effective Ge for the initialization is taken to be (gadjust*Ge) from the 

last rubbery knot, while the effective gG  is taken to be gG /gadjust. These adjustments are 
necessary to ensure that the Analytical Wicket defines a loss factor for the entire range of 
modulus magnitude from the ratio.  The value for maxη  is from the Analytical Wicket; an 
effective beta is calculated. The Ratio Model with initial values of parameters is shown in Figure 
14 through Figure 16 where the initial location of the ri’s are indicated by the circles and 
compared to the Analytical Wicket. 

Iteration is based on Equation 34 approximated by Equation 37 or, equivalently, Equation 38; the 
loss factor is strongly dependent on the local slope of the magnitude. With reference to Figure 17, 
ri indicates the beginning location of the center of a vertical strip/slice with associated values for 
the magnitude and loss factor from the Ratio Model. The horizontal and vertical axes do not 
change and the curves are on a stretchable/compressible transparent layer portions of which also 
possibly slides right and left and/or up and down as a rigid body. If the width of the strip is 
increased or stretched (by increasing the value for ai), the slope of the magnitude curve is 
decreased and consequently the ratio loss factor would be decreased. When the strip is stretched, 
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the curves for either the higher or lower reduced radian frequency will slide left or right, and 
some accommodation must be made.  

In present practice, iteration consists of calculating the modulus magnitude and loss factor given 
by the Ratio Model at each value of ri, calculating the loss factor from the Analytical Wicket 
associated with the value of the Ratio Model modulus, comparing the Ratio Model loss factor to 
the wicket loss factor, and adjusting the value of the ai’s to make the ratio loss factor value more 

closely agree with that of the Analytical Wicket. The new ai is approximated by Equation 38 in 

terms of the old ai, the loss from the ratio, and the loss from the wicket, but only a fraction of the 
indicated change is made during each iteration pass.  Bode diagram visualization provides 
guidance on this adjustment algorithm.  

Convergence has been achieved when the values for the parameters in the Ratio Model do not 
change significantly with successive iterations; hopefully the Ratio Model matches the Analytical 
Wicket very closely (see Figure 18 through Figure 20).  The location of the ri’s are again 
indicated on the plots.  Very often, the ratio does not closely match the Analytical Wicket at the 
extremes; this is due to a numerical artifact not yet understood.  Most often it occurs beyond the 
range of experimental data. 

After convergence, all of the ir ’s are changed by a constant multiplier in order to cause maxηMG  to 
occur at the reference reduced radian frequency, πω 200=REF . This causes the temperature for 
which the value of the temperature shift function (which is yet TBD) is one to be the temperature 
for which the loss factor is the maximum for the reference 100 Hz cyclic frequency. 

At this juncture, the SIM of the complex valued modulus as a function of reduced radian 
frequency is complete and the frequency and temperature of the data points have not yet been 
considered. Also, the arc length of the Analytical Wicket has been implicitly mapped into 
reduced radian frequency; i.e., a unique value of reduced radian frequency is associated with 
every value of arc length and therefore with the intersection of the perpendicular distance to each 
experimental point. This will be used to calculate the TSF. The operators in Equation 1 have been 
synthesized and are available for all other possible uses.  
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11 THE TEMPERATURE SHIFT FUNCTION 
The value of reduced radian frequency associated with each experimental data point may be 
found by considering the perpendicular distance to the wicket plot as illustrated in Figure 21. 
Given the experimental temperature, the experimental frequency, and the associated reduced 
radian frequency for each CM data point, the individual values for the TSF may be calculated: 
 ( )

ιιι
πωα ΕΕΤ /2=Τ fR . (94) 

This is a totally new method of determining the TSF. See TSF points in Figure 22 through Figure 
26; TSF versus 1000/T in Figure 27 through Figure 29. It may be desirable to fit a local quadratic 
or the Arrhenius equation (see Equation 95) to only the transition points to obtain an initial 
estimate of the reference temperature and of the corresponding value of the slope.  

The set of CM data itself implicitly defines the TSF, and one purpose of any method to smooth, 
interpolate and model a set of CM data is to facilitate this.  The present method is well founded 
on mathematical rigor and is believed to be insensitive to limited frequency and temperature 
ranges, data scatter, etc. 

It is assumed that a single TSF is applicable.  



22 

 

12 TSF EQUATIONS 
It remains to smooth, interpolate, and model the temperature shift as a function of temperature. 
This is done by a best fit of equations to the TSF points. The Arrhenius expression is one TSF 
(designated "A" TSF) commonly used; in the present notation it is 
 ( ) ( )Ζ2

ΖΑΖΤ Τ1/−Τ1/Τ=Τ sαlog  (95) 

it follows that the slope (STSF) of the Arrhenius expression is a one-term quadratic in (1/T): 
 22

ΖΑΖΤ Τ/Τ=Τ/ sdd αlog . (96) 

Some investigators are interested in the apparent activation energy (AAE) and the general 
expression is  
 Τ/Τ2.303=∆Η Τ

2
Α ddR αlog , (97) 

where the gas constant is  
 R=0.00828newton*km/gram*mo e*degK . (98) 

If the Arrhenius expression for TSF and its associated STSF are substituted, the corresponding 
expression for the Arrhenius AAE is  
 2

ΖΑΖΑ Τ2.303=∆Η Rs , (99) 

which is a constant. This expression shows that the apparent activation energy is proportional to 
sAZ and indicates that if the TSF is insensitive to temperature (i.e., if the properties of a VEM do 
not change much as a function of temperature), then the AAE is small.  

Because of the relevance of the Arrhenius expression, an expression has been developed in which 
the slope is a more general quadratic in 1/T [27] than the STSF of the Arrhenius:  
 ( ) ( ) ( ) ΑΖΖ

2
ΖΤ +Τ1/−Τ1/+Τ1/−Τ1/=Τ/Τ− sbadd αlog . (100) 

(Perhaps a different quadratic more closely related to the slope of the Arrhenius  
( ) cbs ′+Τ1/−Τ1/′+Τ/Τ Ζ

22
ΖΑΖ  

would have been more appropriate; compare with Equations 96 and 100.)  Integrating the slope 
and choosing the constant of integration for convenience gives the following expression for the 
"Q" TSF yields  

( ) ( ) ( ) ( ) ( )( )ΖΑΖ
2
ΖΖΖΖΖΤ Τ−Τ−Τ/−Τ/+Τ/Τ−Τ/22.303+Τ1/−Τ1/=Τ sabbaa loglogα . (101) 

This equation may be fit through three points. 

The WLF is also a widely used expression for the "W" TSF and, in the present notation is  
 ( ) ( ) ( )( ) 2Ζ2ΖΖΑΖΤ −Τ>Τ;/Τ−Τ+1/Τ−Τ−=Τ CCsalog , (102) 

where the commonly used parameters are related by  sAZ=C1/C2  and the STSF is  

 ( ) ( )( )22ΖΑΖΤ /Τ−Τ+1=Τ/Τ− Csdd αlog . (103) 

Another TSF expression used is the exponential which in the present general (EG TSF) notation 
is  
 ( ) ( )( ) eee CCsC −Τ>Τ;/Τ−Τ+1−2.303=Τ ΖΖΑΖΤ loglogα , (104) 
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and its STSF is  
 ( ) ( )( )eCsdd /Τ−Τ+1=Τ/Τ− ΖΑΖΤαlog . (105) 

Two sets of values of parameters used in the past are (EA TSF & ED TSF):  
 KCsDIGJKCsADN eAZeAZ 4.154,0394.0:;6.97,0490.0: ==== . (106) 

Figure 22 through Figure 26 present the TSF points as a function of temperature as well as three 
equations (the WLF, the slope as a quadratic in (1/T), and a fourth-order polynomial) which have 
been regression fitted to the data. Figure 27 through Figure 29 are plots of the TSF plotted versus 
1000/T for the three VEMs processed in the present effort; because none of these three appear to 
be a straight line, the Arrhenius equation is not used further in the present effort.  Using the 
fourth-order polynomial, slopes are plotted in Figure 30 through Figure 32 and the AAE in Figure 
33 through Figure 35. The usual International Plot Nomograms[28] with solid lines/curves 
indicating the experimental range are presented as Figure 36 through Figure 40. Only the 
nomogram is of direct interest to designers, while the TSF, the slope, the AAE, and other 
quantities are of more detailed or specialized interest.
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13 REDUCED TEMPERATURE 
From the concept of reduced frequency, it follows that (within practical limits) there are 
equivalent combinations (T1,f1) and (T2,f2) for which  

 ( ) ( ) 21212Τ221Τ ≠,Τ≠Τ;Τ==Τ= ffffff RR αα11 . (107) 

For reduced frequency, a reference temperature is selected and the experimental frequency and 
temperature are used  
 ( ) ( )ιιαα ΕΤΕΤ Τ=Τ= fff REFREDiRi  (108) 

or  
 ( ) ( ) 1=Τ;Τ== ΤΕΤ REFEiREDiRi fff αα ι . (109) 

For the reduced temperature concept, it follows that  
 ( ) ( )ιιι αα ΕΤΕΤ Τ=Τ ff REDREF  (110) 

or  
 ( ) ( ) REFRED ff /Τ=Τ ΕΕΤΤ ιιι αα . (111) 

Given αT(T),TEi,fEi and fREF , it is a simple matter to find a numerical value for TREDi 
such that Equation 111 is satisfied.  If the Arrhenius Equation 95 TSF is used, the reduced 
temperature may be expressed directly:  
 ( ) ]/+= Ε REFZAZEiEiREDi TsTTT ωω ιlog/1/[ 2 . (112) 

A nomogram[28,29] to reduced temperature using Equation 111 can be included in plots of data 
based on reduced temperature. The CM as a function of reduced temperature could be plotted and 
would include a temperature-frequency nomogram. 
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14 OTHER QUANTITIES 
The form of the Ratio Model makes interconversion to other dynamic mechanical properties such 
as molecular weight distribution (Figure 41 through Figure 43), relaxation modulus (Figure 44 
through Figure 46), creep compliance (Figure 47 through Figure 49), and relaxation and 
retardation spectra (Figure 50 through Figure 52) convenient. 
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15 SENSITIVITY 
There are regions in which the loss factor is insensitive to variations in temperature and/or 
frequency. Partial derivatives with respect to temperature and to log frequency are useful in 
considering the dependence and sensitivity of viscoelastic damping material dynamic mechanical 
properties. The partial of log modulus magnitude with respect to log radian frequency is 
 ( )( )ωωωω loglogloglogloglog /∂∂/=/∂∂ ΜΜ RRdGdG . (113) 

Using the relationship Equation 10 for reduced frequency to simplify leads to 
 ( )RdGdG ωω loglogloglog /=/∂∂ ΜΜ . (114) 

If the approximate relationship Equation 39 is substituted, the following is obtained 
 ηπω arctan)/2(loglog ≈/∂∂ ΜG . (115) 

This equation shows that, if the loss factor is significant, the modulus magnitude will always 
change substantially with respect to frequency. It indicates that vibration modes of different 
frequencies will operate at different values for the modulus. This is one of the practicalities of 
design and application which must be accommodated. The partial of modulus magnitude with 
respect to temperature is  
 ( )( )TdGdTG RR /∂∂/=/∂∂ ΜΜ ωω loglogloglog . (116) 

Using the relationship Equation 10 for reduced frequency to simplify leads to 
 ( )( )TdGdTG TR /∂∂/=/∂∂ ΜΜ αω loglogloglog . (117) 

Substituting the expression for the slope (STSF) of the Arrhenius TSF E 96 results in 
 ( )( )22

ΖΑΖΜΜ Τ/Τ/=/∂∂ sdGdTG Rωlogloglog . (118) 

If the expression for the AAE for the Arrhenius TSF Equation 99 is used, the following 
relationship is useful: 
 ( )( )2ΑΜΜ Τ/2.303∆Η/=/∂∂ RdGdTG Rωlogloglog . (119) 

Substituting the approximation Equation 39 leads to a relationship between the partial derivative 
and the product of two factors: 
 ( ) ηπ arctan)/2(log 2

ΑΜ Τ/2.303∆Η=/∂∂ RTG . (120) 

From this expression, it is obvious that, for the sensitivity of the modulus to temperature to be 
small (which is not important in itself), and for the loss factor to be large, the AAE must be small.  

From observations, it is well known that there is an inverse relationship between the level of 
maximum loss factor and the breadth of the transition peak with respect to temperature, i.e., the 
higher the maximum loss factor, the narrower is the loss factor peak as a function of temperature.  
The present development offers some qualitative insight.  With reference to Equation 25, the 
magnitude of the complex valued term varies from very small in the rubbery region to very large 
in the glassy region.  In effect, it defines the transition and shows in what way the frequency and 
temperature variations are equivalent.  The log of the quantity Equation 29 may be written and 
expanded 
 ( ) [ ]ΟΤΟΤ −+=/ RR ωαωβωωα β loglogloglog . (121) 
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If only polymers that have approximately the same value for the ratio Gg/Ge are considered, then 
a substitution using the approximation Equation 41 is appropriate.  If also the Arrhenius TSF 
Equation 95 is used, then  
 ( ) ( )[ ] maxarctan)/2(logloglog ηπωωωωα β

ΟΖ
2
ΖΑΖΟΤ −Τ1/−Τ1/Τ+≈/ RR s . (122) 

The bracketed quantity is multiplied by a function of ηmax, which controls the rapidity of 
variation of the quantity from small to large. This indicates that the width of the transition is 
indeed governed by the height of the peak. 

Equation 96 indicates that, at the reference temperature, an increment of 1 decade in the TSF is 
caused by an increment in temperature of  
 ΑΖ1 1/≈∆Τ sdecade . (123) 

For a value of sAZ=0.05, the increment in temperature equivalent to 1 decade of frequency would 
be 20 degrees Kelvin.  
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16 DISCUSSION 
The present method of SIMming a set of CM data and its TSF is a network of mutually 
complementary elements. It appears that a quantum leap of maturity and efficiency has been 
achieved. The wicket plot is at the core of the system. Initially, it is used to display the set of data 
under consideration. It can be used to edit individual points and reveal conspicuously bad data.  
On the other hand, a nice wicket plot does not guarantee accurate data. Once it is decided to 
proceed, the Analytical Wicket is constructed. In the data region, a series of splines is fitted to the 
center and slope of the band of data, thereby smoothing and interpolating the experimental 
region. Nothing beats accurate data. The analytic geometry fitting of experimental data is 
challenging. The middle half of the experimental range is usually easy, but the two ends can be 
especially difficult. High-order polynomials will generally go close to the points, but oscillate 
wildly.  Note the glassy end of the Analytical Wicket in Figure 8 in which the fit has been forced 
to lower values of loss factor; the effect shows up in both the TSF in Figure 22 and the 
nomogram in Figure 36.  Typically, all three of these plots should be examined for a subjective 
judgment on goodness of fit.  The isotherms (the subset of data points at the same temperature) 
suggest either inaccurate data or a non-TRS material.  Likewise, the glassy end shown in Figure 
9, Figure 23, and Figure 37 are open to subjective consideration; the present approach is shown to 
interpolate the experimental gaps in modulus.  Figure 38 reveals that the Analytical Wicket in 
Figure 10 did not capture the center of the band of data everywhere. Slopes from a previous 
investigation [29] have been included in Figure 32. 

Figure 11, Figure 25, and Figure 39 show the Analytical Wicket, the TSF, and the nomogram for 
a set of data covering VAMAC[30].  This set has modulus and loss factor for only one frequency 
at each temperature.  It extends into the rubbery and the glassy regions and appears to be fairly 
smooth.  The present method of determining the TSF works well with this set, whereas historical 
methods do not determine a unique TSF.  Consequently, the capability of the new approach is 
illuminated. Figure 12, Figure 26, and Figure 26 cover the rubber modified epoxy set of data [1] 
which has one of the tighter wicket plots.  

Once the data region is fitted, extrapolations must be made toward the rubbery and glassy skirts.  
The fitting and extrapolations are automated and goodness of fit is somewhat subjective. The 
perpendicular distance, d, to the wicket and the arc length, s, along the wicket plot may be used to 
improve the fit (see Figure 8 through Figure 12.)  The Analytical Wicket is treated as the 
definition of the material loss factor as a function of the modulus magnitude for the purposes of 
iteration.   
The mathematical concept of mapping is then used.  The Analytical Wicket may be considered to 
be two functions, namely material loss factor and modulus magnitude, of the independent 
variable, arc length, s.  From systems theory, it is known that these two functions are also two 
components of a complex valued function of the independent variable, reduced radian frequency.  
Developing an expression (here the Ratio Model after the values of the parameters have been 
determined) for that complex valued function is called mapping. 

Another key to the present approach is the form of the Ratio Model, which is a ratio of factored 
polynomials with first-order factors, with the numerator and denominator of equal order.  This 
form guarantees that the interrelationship of any two components of the complex valued function 
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remains satisfied. The mapping consists of first initiation and then iteration until convergence.  
Both of these are facilitated by the form of the ratio.   

The initialization is achieved by use of the simplest fractional model as described above (see 
Figure 14 through Figure 16). The iteration consists of stepwise fitting of the CM as a function of 
reduced radian frequency and is easily visualized by use of Bode diagrams.  The iteration 
algorithm (see Figure 17) is based on Bode diagram visualization and converges rapidly (see 
Figure 18 through Figure 20).  The ratio closely matches the Analytical Wicket for the most part; 
on occasion, there is a lack of match at a glassy tail (see Figure 18 and Figure 19) for reasons not 
understood at present. For every material, care should be taken that there are no unintentional 
extrapolations in any quantity.   

The mapping process implicitly associates values of Analytical Wicket arc length with reduced 
radian frequency, thereby associating a unique value of reduced radian frequency with each 
experimental data point by means of its perpendicular distance to the wicket. This approach for 
TSF is believed to be new. The TSF for every experimental data point may be calculated and 
plotted and fitted with three equations for the TSF, i.e., the WLF, the quadratic slope in (1/T), 
and a fourth-order polynomial (see Figure 22 through Figure 26).   

There is obvious scatter in the TSF at the glassy end in Figure 22 and Figure 23, and scatter 
throughout Figure 24. The purpose of the data should be brought to bear on whether or not the 
scatter is acceptable. 

The corresponding slope of the TSF (see Figure 30 through Figure 32) and the apparent 
activation energy (see Figure 33 through Figure 35) may also be plotted. After the TSF is 
established, the standard nomogram (see Figure 36 through Figure 40) can be plotted.   

The present approach is very highly automated, but maintains options for computer operator 
interaction.   

The form of the Ratio Model makes interconversion to other dynamic mechanical properties such 
as molecular weight distribution (Figure 41 through Figure 43), relaxation modulus (Figure 44 
through Figure 46), creep compliance (Figure 47 through Figure 49), and relaxation and 
retardation spectra (Figure 50 through Figure 52) convenient. 

The present method is well founded on mathematical rigor and is believed to be insensitive to 
limited frequency and temperature ranges, data scatter, etc. 

Once a database of information on several polymeric damping materials is established, it can 
become somewhat cumbersome to search the database. One method would be to develop a table 
wherein each material was described by one line. The materials would be sorted by the 
temperature (in degrees K, C, and F) of maximum loss factor for a frequency of 100 Hz. Then the 
maximum loss factor, the corresponding real modulus in metric and English units, the slope of 
the TSF, the data source, etc., would follow. Such a system would be convenient for manual 
sorting of materials and might possibly be adequate for some design applications. A 
computerized system for sorting or sifting would be most efficient. 

Low values of loss factor and low slopes of modulus (real and magnitude) always occur together. 
When this happens, the SIM becomes challenging because of data scatter and numerical 
sensitivity. The present method performs satisfactorily in this situation.  
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The approach facilitates communication, is useful to the polymer engineer and to the designer, is 
fair to the material supplier and tester, and puts pressure on the damping industry to make further 
improvements and advancements within the limits of economic practicality. 
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17 SUMMARY 
Typically, when a set of CM is taken, there will be scatter in the measurements.  Therefore, some 
smoothing is required. Also, the measurement temperatures and frequencies are not covered in 
continuous fashion. Consequently, interpolation is required in the process of design or analysis of 
a vibration damping configuration. Computerized modeling greatly facilitates storage, retrieval, 
and dissemination of the dynamic mechanical properties of a damping polymer. These are crucial 
factors in the further advancement and application of damping technology. Historically, the 
Wicket Plot has been used to edit a set of data and to look for indications of poor quality or 
accuracy. The approach reported herein further used the wicket plot. A series of splines is used to 
represent the set of data, namely, loss factor as a function of modulus magnitude. These splines 
closely approximate the center of the band of data and its slope. Additional splines are used to 
gracefully extrapolate the data toward both the rubbery and glassy region. Collectively, these 
splines are called the Analytical Wicket. It treats the loss factor as a function of the modulus 
magnitude. The loss factor and modulus magnitude may also be treated as two functions of a 
parameter, in this case, arc length along the wicket. The loss factor and modulus magnitude may 
also be treated as two components of a complex valued function (actually a frequency response 
function) of a single independent variable, in this case, reduced radian frequency.   

The complex valued function (i.e., the CM) is represented by the Ratio Model, which is a ratio of 
polynomials of first-order factors with the numerator and the denominator being the same order.  
One pair of first-order factors, one in the numerator and the other in the denominator, result in 
one step with respect to Bode diagram considerations. The Ratio Model intrinsically guarantees 
that the interrelationships of linear systems are satisfied. An initialization and iteration technique 
is used to determine values for the parameters in the Ratio Model. The basic fractional derivative 
equation for CM is critical to the initialization process. One characteristic of CM is that the loss 
factor is strongly dependent on the slope of the modulus magnitude as a function of reduced 
radian frequency. The iteration process is based on this characteristic. The Ratio Model is used to 
calculate modulus magnitude and loss factor at each step; and the Analytical Wicket is used to 
calculate the loss factor corresponding to the modulus from the ratio. If the two values for loss 
factor are not identical, the slope of the modulus is changed appropriately. Once the Ratio Model 
closely matches the Analytical Wicket, the perpendicular distance from individual data points to 
the wicket defines a unique value for arc length and for reduced radian frequency of the Ratio 
Model from which the value of the temperature shift function is calculated.   

The form of the Ratio Model greatly facilitates fitting the wicket plot by initialization and 
iteration. It also is straightforward to calculate other dynamic mechanical properties based on the 
CM. 

The present approach is interactive and highly automated and exploits modern computational 
power. It facilitates communication, is useful to the designer, is fair to the material supplier and 
tester, and puts pressure on the damping industry to make further improvements and 
advancements within the limits of economic practicality.     
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18 FIGURES 

 
Figure 1: Basic CM Model 
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Figure 2: Bode Diagram for a Half Power Factor 
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Figure 3: Diagram for a Two-Step Model 
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Figure 4: Conceptual Bode Diagram for the Ratio Model 
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Figure 5: Speculated Transition of Poisson’s Ratio 
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Figure 6: Modulus Transitions for a 0.495 Rubbery Poisson’s Ratio 
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Figure 7: Modulus Transitions for a 0.49995 Rubbery Poisson’s Ratio 
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Figure 8: Analytical Wicket for VEM 23 with Key Features 
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Figure 9: Analytical Wicket for VEM 100 
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Figure 10: Analytical Wicket for VEM Polyisobutylene 
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Figure 11: Analytical Wicket for VEM VAMAC 
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Figure 12: Analytical Wicket for VEM Rubber Modified Epoxy 
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Figure 13: Projectile Parametric Illustration 
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Figure 14: Ratio Initialization Wicket Plot for VEM 23 
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Figure 15: Ratio Initialization Wicket Plot for VEM 100 
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Figure 16: Ratio Initialization Wicket Plot for VEM Polyisobutylene 
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Figure 17: Illustration of the Iteration Algorithm 
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Figure 18: Ratio-Converged Wicket Plot for VEM 23 
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Figure 19: Ratio-Converged Wicket Plot for VEM 100 
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Figure 20: Ratio-Converged Wicket Plot for VEM Polyisobutylene 
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Figure 21: New Method to Determine TSF 
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Figure 22: TSF for VEM 23 
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Figure 23: TSF for VEM 100 
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Figure 24: TSF for VEM Polyisobutylene 
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Figure 25: TSF for VEM VAMAC 
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Figure 26: TSF for VEM Rubber Modified Epoxy 
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Figure 27: TSF versus 1/T for VEM 23 
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Figure 28: TSF versus 1/T for VEM 100 
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Figure 29: TSF versus 1/T for VEM Polyisobutylene 
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Figure 30: Slope of the TSF for VEM 23 
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Figure 31: Slope of the TSF for VEM 100 
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Figure 32: Slope of the TSF for VEM Polyisobutylene 
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Figure 33: AAE for VEM 23 
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Figure 34: AAE for VEM 100 
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Figure 35: AAE for VEM Polyisobutylene 
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Figure 36: Nomogram for VEM 23 
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Figure 37: Nomogram for VEM 100 
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Figure 38: Nomogram for VEM Polyisobutylene 
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Figure 39: Nomogram for VEM VAMAC 
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Figure 40: Nomogram for VEM Rubber Modified Epoxy 



72 

 
Figure 41: Molecular Weight Distribution for VEM 23 
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Figure 42: Molecular Weight Distribution for VEM 100 
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Figure 43: Molecular Weight Distribution for VEM Polyisobutylene 
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Figure 44: Relaxation Modulus for VEM 23 
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Figure 45: Relaxation Modulus for VEM 100 
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Figure 46: Relaxation Modulus for VEM Polyisobutylene 
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Figure 47: Creep Compliance for VEM 23 
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Figure 48: Creep Compliance for VEM 100 
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Figure 49: Creep Compliance for VEM Polyisobutylene 
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Figure 50: Relaxation and Retardation Spectra for VEM 23 
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Figure 51: Relaxation and Retardation Spectra for VEM 100 
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Figure 52: Relaxation and Retardation Spectra for Polyisobutylene 
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